The Wealth & Health of Nations

Started by CrackSmokeRepublican, November 15, 2012, 02:21:33 AM

Previous topic - Next topic

CrackSmokeRepublican

Germany in 1939...

The Wealth & Health of Nations


http://bost.ocks.org/mike/nations/


<!DOCTYPE html>
<meta charset="utf-8">
<title>The Wealth & Health of Nations</title>
<style>

@import url(../style.css?20120427);

#chart {
  margin-left: -40px;
  height: 506px;
}

text {
  font: 10px sans-serif;
}

.dot {
  stroke: #000;
}

.axis path, .axis line {
  fill: none;
  stroke: #000;
  shape-rendering: crispEdges;
}

.label {
  fill: #777;
}

.year.label {
  font: 500 196px "Helvetica Neue";
  fill: #ddd;
}

.year.label.active {
  fill: #aaa;
}

.overlay {
  fill: none;
  pointer-events: all;
  cursor: ew-resize;
}

</style>

<header>
  <aside>March 13, 2012</aside>
  <a href="../" rel="author">Mike Bostock</a>
</header>

<h1>The Wealth & Health of Nations</h1>

<p id="chart"></p>

<aside>Mouseover the year to move forward and backwards through time.</aside>

<p class="attribution">Source: <a href="https://github.com/RandomEtc/mind-gapper-js">Tom Carden</a>, <a href="http://gapminder.org">Gapminder</a>.

<p>This is a recreation in <a href="http://d3js.org/">D3</a> of Gapminder's <a href="http://gapminder.org/world/">Wealth & Health of Nations</a>, made famous by Hans Rosling's memorable <a href="http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html">2006 TED talk</a>. It shows the dynamic fluctuation in per-capita income (<i>x</i>), life expectancy (<i>y</i>) and population (radius) of 180 nations over the last 209 years. Nations are colored by geographic region; mouseover to read their names.

<p>As <a href="http://randometc.github.com/mind-gapper-js/">Tom Carden</a> noted, there's a surprising amount of work that goes into making something look simple. For one, data collected in recent years is consistent, while data prior to 1950 is sparse; although potentially misleading, these visualizations use <a href="http://en.wikipedia.org/wiki/Lerp_(computing)">linear interpolation</a> for missing data points. The lookup for the two interpolation values at each frame is accelerated using <a href="http://en.wikipedia.org/wiki/Binary_search_algorithm">bisection</a> of sorted arrays per dimension.

<p>Interested to see how this chart was implemented? <a href="https://github.com/mbostock/bost.ocks.org/blob/gh-pages/mike/nations/index.html">View source!</a> Want a fun project? Try adding a <a href="https://github.com/mbostock/d3/wiki/Voronoi-Geom">Voronoi overlay</a> (as in this <a href="http://mbostock.github.com/d3/talk/20111116/airports.html">airport diagram</a>) to improve mouseover interaction on small targets. Or try a static version, using trails instead of motion.

<footer>
  <aside>March 13, 2012</aside>
  <a href="../" rel="author">Mike Bostock</a>
</footer>

<script src="http://d3js.org/d3.v2.js?2.8.1"></script>
<script>

// Various accessors that specify the four dimensions of data to visualize.
function x(d) { return d.income; }
function y(d) { return d.lifeExpectancy; }
function radius(d) { return d.population; }
function color(d) { return d.region; }
function key(d) { return d.name; }

// Chart dimensions.
var margin = {top: 19.5, right: 19.5, bottom: 19.5, left: 39.5},
    width = 960 - margin.right,
    height = 500 - margin.top - margin.bottom;

// Various scales. These domains make assumptions of data, naturally.
var xScale = d3.scale.log().domain([300, 1e5]).range([0, width]),
    yScale = d3.scale.linear().domain([10, 85]).range([height, 0]),
    radiusScale = d3.scale.sqrt().domain([0, 5e8]).range([0, 40]),
    colorScale = d3.scale.category10();

// The x & y axes.
var xAxis = d3.svg.axis().orient("bottom").scale(xScale).ticks(12, d3.format(",d")),
    yAxis = d3.svg.axis().scale(yScale).orient("left");

// Create the SVG container and set the origin.
var svg = d3.select("#chart").append("svg")
    .attr("width", width + margin.left + margin.right)
    .attr("height", height + margin.top + margin.bottom)
  .append("g")
    .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

// Add the x-axis.
svg.append("g")
    .attr("class", "x axis")
    .attr("transform", "translate(0," + height + ")")
    .call(xAxis);

// Add the y-axis.
svg.append("g")
    .attr("class", "y axis")
    .call(yAxis);

// Add an x-axis label.
svg.append("text")
    .attr("class", "x label")
    .attr("text-anchor", "end")
    .attr("x", width)
    .attr("y", height - 6)
    .text("income per capita, inflation-adjusted (dollars)");

// Add a y-axis label.
svg.append("text")
    .attr("class", "y label")
    .attr("text-anchor", "end")
    .attr("y", 6)
    .attr("dy", ".75em")
    .attr("transform", "rotate(-90)")
    .text("life expectancy (years)");

// Add the year label; the value is set on transition.
var label = svg.append("text")
    .attr("class", "year label")
    .attr("text-anchor", "end")
    .attr("y", height - 24)
    .attr("x", width)
    .text(1800);

// Load the data.
d3.json("nations.json", function(nations) {

  // A bisector since many nation's data is sparsely-defined.
  var bisect = d3.bisector(function(d) { return d[0]; });

  // Add a dot per nation. Initialize the data at 1800, and set the colors.
  var dot = svg.append("g")
      .attr("class", "dots")
    .selectAll(".dot")
      .data(interpolateData(1800))
    .enter().append("circle")
      .attr("class", "dot")
      .style("fill", function(d) { return colorScale(color(d)); })
      .call(position)
      .sort(order);

  // Add a title.
  dot.append("title")
      .text(function(d) { return d.name; });

  // Add an overlay for the year label.
  var box = label.node().getBBox();

  var overlay = svg.append("rect")
        .attr("class", "overlay")
        .attr("x", box.x)
        .attr("y", box.y)
        .attr("width", box.width)
        .attr("height", box.height)
        .on("mouseover", enableInteraction);

  // Start a transition that interpolates the data based on year.
  svg.transition()
      .duration(30000)
      .ease("linear")
      .tween("year", tweenYear)
      .each("end", enableInteraction);

  // Positions the dots based on data.
  function position(dot) {
    dot .attr("cx", function(d) { return xScale(x(d)); })
        .attr("cy", function(d) { return yScale(y(d)); })
        .attr("r", function(d) { return radiusScale(radius(d)); });
  }

  // Defines a sort order so that the smallest dots are drawn on top.
  function order(a, b) {
    return radius(b) - radius(a);
  }

  // After the transition finishes, you can mouseover to change the year.
  function enableInteraction() {
    var yearScale = d3.scale.linear()
        .domain([1800, 2009])
        .range([box.x + 10, box.x + box.width - 10])
        .clamp(true);

    // Cancel the current transition, if any.
    svg.transition().duration(0);

    overlay
        .on("mouseover", mouseover)
        .on("mouseout", mouseout)
        .on("mousemove", mousemove)
        .on("touchmove", mousemove);

    function mouseover() {
      label.classed("active", true);
    }

    function mouseout() {
      label.classed("active", false);
    }

    function mousemove() {
      displayYear(yearScale.invert(d3.mouse(this)[0]));
    }
  }

  // Tweens the entire chart by first tweening the year, and then the data.
  // For the interpolated data, the dots and label are redrawn.
  function tweenYear() {
    var year = d3.interpolateNumber(1800, 2009);
    return function(t) { displayYear(year(t)); };
  }

  // Updates the display to show the specified year.
  function displayYear(year) {
    dot.data(interpolateData(year), key).call(position).sort(order);
    label.text(Math.round(year));
  }

  // Interpolates the dataset for the given (fractional) year.
  function interpolateData(year) {
    return nations.map(function(d) {
      return {
        name: d.name,
        region: d.region,
        income: interpolateValues(d.income, year),
        population: interpolateValues(d.population, year),
        lifeExpectancy: interpolateValues(d.lifeExpectancy, year)
      };
    });
  }

  // Finds (and possibly interpolates) the value for the specified year.
  function interpolateValues(values, year) {
    var i = bisect.left(values, year, 0, values.length - 1),
        a = values[i];
    if (i > 0) {
      var b = values[i - 1],
          t = (year - a[0]) / (b[0] - a[0]);
      return a[1] * (1 - t) + b[1] * t;
    }
    return a[1];
  }
});

</script>
After the Revolution of 1905, the Czar had prudently prepared for further outbreaks by transferring some $400 million in cash to the New York banks, Chase, National City, Guaranty Trust, J.P.Morgan Co., and Hanover Trust. In 1914, these same banks bought the controlling number of shares in the newly organized Federal Reserve Bank of New York, paying for the stock with the Czar\'s sequestered funds. In November 1917,  Red Guards drove a truck to the Imperial Bank and removed the Romanoff gold and jewels. The gold was later shipped directly to Kuhn, Loeb Co. in New York.-- Curse of Canaan